Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
1.
Front Immunol ; 15: 1365718, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646545

RESUMO

Macrophages are tissue resident innate phagocytic cells that take on contrasting phenotypes, or polarization states, in response to the changing combination of microbial and cytokine signals at sites of infection. During the opening stages of an infection, macrophages adopt the proinflammatory, highly antimicrobial M1 state, later shifting to an anti-inflammatory, pro-tissue repair M2 state as the infection resolves. The changes in gene expression underlying these transitions are primarily governed by nuclear factor kappaB (NF-κB), Janus kinase (JAK)/signal transducer and activation of transcription (STAT), and hypoxia-inducible factor 1 (HIF1) transcription factors, the activity of which must be carefully controlled to ensure an effective yet spatially and temporally restricted inflammatory response. While much of this control is provided by pathway-specific feedback loops, recent work has shown that the transcriptional co-regulators of the CBP/p300-interacting transactivator with glutamic acid/aspartic acid-rich carboxy-terminal domain (CITED) family serve as common controllers for these pathways. In this review, we describe how CITED proteins regulate polarization-associated gene expression changes by controlling the ability of transcription factors to form chromatin complexes with the histone acetyltransferase, CBP/p300. We will also cover how differences in the interactions between CITED1 and 2 with CBP/p300 drive their contrasting effects on pro-inflammatory gene expression.


Assuntos
Macrófagos , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Animais , Regulação da Expressão Gênica , Transdução de Sinais , Ativação de Macrófagos/genética , Transativadores/metabolismo , Transativadores/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Polaridade Celular
2.
Am J Trop Med Hyg ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653233

RESUMO

The Walter Reed Project is a collaboration between the Walter Reed Army Institute of Research of the United States Department of Defense and the Kenya Medical Research Institute. The Kisumu field station, comprising four campuses, has until recently been devoted primarily to research on malaria countermeasures. The Kombewa Clinical Research Center is dedicated to conducting regulated clinical trials of therapeutic and vaccine candidates in development. The center's robust population-based surveillance platform, along with an active community engagement strategy, guarantees consistent recruitment and retention of participants in clinical trials. The Malaria Diagnostic Center, backed by WHO-certified microscopists and a large malaria blood film collection, champions high-quality malaria diagnosis and strict quality assurance through standardized microscopy trainings. The Malaria Drug Resistance Laboratory leverages cutting-edge technology such as real-time Polymerase Chain Reaction (qPCR) to conduct comprehensive research on resistance markers and obtain information on drug efficacy. The laboratory has been working on validating artemisinin resistance markers and improving tracking methods for current and future antimalarial compounds. Finally, the Basic Science Laboratory employs advanced genomic technology to examine endpoints such as immunogenicity and genomic fingerprinting for candidate drugs and vaccine efficacy. Herein, we examine the site's significant contributions to malaria policy, management, and prevention practices in Kenya and around the world.

4.
Curr Res Food Sci ; 7: 100575, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37680695

RESUMO

Pickering emulsions (PE) are systems made up of two incompatible fluids, these are stabilized by solid organic or inorganic particles located on their interface. Cellulose nanocrystals (CNCs) are sustainable and biocompatible value-added naturally occurring biomolecules which are being investigated as PE stabilizers in the cosmetic, food, and pharmaceutical industries. The objective of this research was to investigate the efficacy of pineapple cellulose nanocrystals as stabilizers for a ginger essential oil-in-water Pickering emulsion. Anionic pineapple cellulose nanocrystals were prepared by acid hydrolysis. Ginger essential oil-in-water emulsions were prepared by ultrasonication. Pineapple CNC produced stable Pickering emulsions with surface average droplet size of 4.3 µm-6.2 µm, high negative zeta potential, high viscosity, and high adsorption at the interface. Pickering emulsions by ultrasonication were stable against droplet coalescence, phase separation, and droplet flocculation for at least 8 weeks at 25 °C or 40 °C at various droplet sizes. The emulsion droplet size and volume density (droplet size distribution) were evaluated by varying the particle concentration (CNC 0.25 g/100 ml or 0.50 g/100 ml) and/or oil fraction (10-20 g/100 ml). At constant oil fraction, the emulsion viscosity increased as the nanocrystal concentration increased. The cellulose nanocrystal-stabilized ginger oil-Pickering emulsions exhibited shear-thinning characteristics of a pseudo-plastic fluid. Pineapple nanocellulose crystal -stabilized ginger oil-Pickering emulsions exhibited high stability with a creaming index of zero. CNC was found to be an effective Pickering stabilizer for oil-in-water emulsions in various food applications.

5.
Lancet Infect Dis ; 23(10): 1175-1185, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37390836

RESUMO

BACKGROUND: Zika virus infection is a threat to at-risk populations, causing major birth defects and serious neurological complications. Development of a safe and efficacious Zika virus vaccine is, therefore, a global health priority. Assessment of heterologous flavivirus vaccination is important given co-circulation of Japanese encephalitis virus and yellow fever virus with Zika virus. We investigated the effect of priming flavivirus naive participants with a licensed flavivirus vaccine on the safety and immunogenicity of a purified inactivated Zika vaccine (ZPIV). METHODS: This phase 1, placebo-controlled, double-blind trial was done at the Walter Reed Army Institute of Research Clinical Trials Center in Silver Spring, MD, USA. Eligible participants were healthy adults aged 18-49 years, with no detectable evidence of previous flavivirus exposure (by infection or vaccination), as measured by a microneutralisation assay. Individuals with serological evidence of HIV, hepatitis B, or hepatitis C infection were excluded, as were pregnant or breastfeeding women. Participants were recruited sequentially into one of three groups (1:1:1) to receive no primer, two doses of intramuscular Japanese encephalitis virus vaccine (IXIARO), or a single dose of subcutaneous yellow fever virus vaccine (YF-VAX). Within each group, participants were randomly assigned (4:1) to receive intramuscular ZPIV or placebo. Priming vaccinations were given 72-96 days before ZPIV. ZPIV was administered either two or three times, at days 0, 28, and 196-234. The primary outcome was occurrence of solicited systemic and local adverse events along with serious adverse events and adverse events of special interest. These data were analysed in all participants receiving at least one dose of ZPIV or placebo. Secondary outcomes included measurement of neutralizing antibody responses following ZPIV vaccination in all volunteers with available post-vaccination data. This trial is registered at ClinicalTrials.gov, NCT02963909. FINDINGS: Between Nov 7, 2016, and Oct 30, 2018, 134 participants were assessed for eligibility. 21 did not meet inclusion criteria, 29 met exclusion criteria, and ten declined to participate. 75 participants were recruited and randomly assigned. 35 (47%) of 75 participants were male and 40 (53%) were female. 25 (33%) of 75 participants identified as Black or African American and 42 (56%) identified as White. These proportions and other baseline characteristics were similar between groups. There were no statistically significant differences in age, gender, race, or BMI between those who did and did not opt into the third dose. All participants received the planned priming IXIARO and YF-VAX vaccinations, but one participant who received YF-VAX dropped out before receipt of the first dose of ZPIV. 50 participants received a third dose of ZPIV or placebo, including 14 flavivirus-naive people, 17 people primed with Japanese encephalitis virus vaccine, and 19 participants primed with yellow fever vaccine. Vaccinations were well tolerated across groups. Pain at the injection site was the only adverse event reported more frequently in participants who received ZPIV than in those who received placebo (39 [65%] of 60 participants, 95% CI 51·6-76·9 who received ZPIV vs three [21·4%] of 14 who received placebo; 4·7-50·8; p=0·006). No patients had an adverse event of special interest or serious adverse event related to study treatment. At day 57, the flavivirus-naive volunteers had an 88% (63·6-98·5, 15 of 17) seroconversion rate (neutralising antibody titre ≥1:10) and geometric mean neutralising antibody titre (GMT) against Zika virus of 100·8 (39·7-255·7). In the Japanese encephalitis vaccine-primed group, the day 57 seroconversion rate was 31·6% (95% CI 12·6-56·6, six of 19) and GMT was 11·8 (6·1-22·8). Participants primed with YF-VAX had a seroconversion rate of 25% (95% CI 8·7-49·1, five of 20) and GMT of 6·6 (5·2-8·4). Humoral immune responses rose substantially following a third dose of ZPIV, with seroconversion rates of 100% (69·2-100; ten of ten), 92·9% (66·1-99·8; 13 of 14), and 60% (32·2-83·7, nine of 15) and GMTs of 511·5 (177·6-1473·6), 174·2 (51·6-587·6), and 79 (19·0-326·8) in the flavivirus naive, Japanese encephalitis vaccine-primed, and yellow fever vaccine-primed groups, respectively. INTERPRETATION: We found ZPIV to be well tolerated in flavivirus naive and primed adults but that immunogenicity varied significantly according to antecedent flavivirus vaccination status. Immune bias towards the flavivirus antigen of initial exposure and the timing of vaccination may have impacted responses. A third ZPIV dose overcame much, but not all, of the discrepancy in immunogenicity. The results of this phase 1 clinical trial have implications for further evaluation of ZPIV's immunisation schedule and use of concomitant vaccinations. FUNDING: Department of Defense, Defense Health Agency; National Institute of Allergy and Infectious Diseases; and Division of Microbiology and Infectious Disease.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Vacinas contra Encefalite Japonesa , Vacinas Virais , Vacina contra Febre Amarela , Infecção por Zika virus , Zika virus , Adulto , Feminino , Humanos , Masculino , Anticorpos Neutralizantes , Anticorpos Antivirais , Método Duplo-Cego , Imunogenicidade da Vacina , Vacinas contra Encefalite Japonesa/efeitos adversos , Vacinas de Produtos Inativados , Vacina contra Febre Amarela/efeitos adversos , Vírus da Febre Amarela , Infecção por Zika virus/prevenção & controle , Febre Amarela/prevenção & controle
6.
Oncogenesis ; 12(1): 32, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37336886

RESUMO

Collectively, the MYC family of oncoprotein transcription factors is overexpressed in more than half of all malignancies. The ability of MYC proteins to access chromatin is fundamental to their role in promoting oncogenic gene expression programs in cancer and this function depends on MYC-cofactor interactions. One such cofactor is the chromatin regulator WDR5, which in models of Burkitt lymphoma facilitates recruitment of the c-MYC protein to chromatin at genes associated with protein synthesis, allowing for tumor progression and maintenance. However, beyond Burkitt lymphoma, it is unknown whether these observations extend to other cancers or MYC family members, and whether WDR5 can be deemed as a "universal" MYC recruiter. Here, we focus on N-MYC amplified neuroblastoma to determine the extent of colocalization between N-MYC and WDR5 on chromatin while also demonstrating that like c-MYC, WDR5 can facilitate the recruitment of N-MYC to conserved WDR5-bound genes. We conclude based on this analysis that N-MYC and WDR5 colocalize invariantly across cell lines at predicted sites of facilitated recruitment associated with protein synthesis genes. Surprisingly, we also identify N-MYC-WDR5 cobound genes that are associated with DNA repair and cell cycle processes. Dissection of chromatin binding characteristics for N-MYC and WDR5 at all cobound genes reveals that sites of facilitated recruitment are inherently different than most N-MYC-WDR5 cobound sites. Our data reveals that WDR5 acts as a universal MYC recruiter at a small cohort of previously identified genes and highlights novel biological functions that may be coregulated by N-MYC and WDR5 to sustain the neuroblastoma state.

7.
Carbohydr Polym ; 315: 120944, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37230607

RESUMO

Valorization of underutilized biobased feedstocks like hetero-polysaccharides is critical for the development of the biorefinery concept. Towards this goal, highly uniform xylan micro/nanoparticles with a particle size ranging from 400 nm to 2.5 µm in diameter were synthesized by a facile self-assembly method in aqueous solutions. Initial concentration of the insoluble xylan suspension was utilized to control the particle size. The method utilized supersaturated aqueous suspensions formed at standard autoclaving conditions without any other chemical treatments to create the resulting particles as solutions cooled to room temperature. Processing parameters of the xylan micro/nanoparticles were systematically studied and correlated with both the morphology and size of xylan particles. By adjusting the crowding of the supersaturated solutions, highly uniform dispersions of xylan particles were synthesized of defined size. The xylan micro/nanoparticles prepared by self-assembly have a quasi-hexagonal shape, like a tile, and depending upon solution concentrations xylan nanoparticles with a thickness of <100 nm were achieved at high concentrations. Based on the usefulness of polysaccharide nanoparticles, like cellulose nanocrystals, these particles have potential for unique structures for hydrogels, aerogels, drug delivery, and photonic materials. This study highlights the formation of a diffraction grating film for visible light with these size-controlled particles.

8.
Lancet ; 401(10373): 294-302, 2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36709074

RESUMO

BACKGROUND: WHO has identified Marburg virus as an emerging virus requiring urgent vaccine research and development, particularly due to its recent emergence in Ghana. We report results from a first-in-human clinical trial evaluating a replication-deficient recombinant chimpanzee adenovirus type 3 (cAd3)-vectored vaccine encoding a wild-type Marburg virus Angola glycoprotein (cAd3-Marburg) in healthy adults. METHODS: We did a first-in-human, phase 1, open-label, dose-escalation trial of the cAd3-Marburg vaccine at the Walter Reed Army Institute of Research Clinical Trials Center in the USA. Healthy adults aged 18-50 years were assigned to receive a single intramuscular dose of cAd3-Marburg vaccine at either 1 × 1010 or 1 × 1011 particle units (pu). Primary safety endpoints included reactogenicity assessed for the first 7 days and all adverse events assessed for 28 days after vaccination. Secondary immunogenicity endpoints were assessment of binding antibody responses and T-cell responses against the Marburg virus glycoprotein insert, and assessment of neutralising antibody responses against the cAd3 vector 4 weeks after vaccination. This study is registered with ClinicalTrials.gov, NCT03475056. FINDINGS: Between Oct 9, 2018, and Jan 31, 2019, 40 healthy adults were enrolled and assigned to receive a single intramuscular dose of cAd3-Marburg vaccine at either 1 × 1010 pu (n=20) or 1 × 1011 pu (n=20). The cAd3-Marburg vaccine was safe, well tolerated, and immunogenic. All enrolled participants received cAd3-Marburg vaccine, with 37 (93%) participants completing follow-up visits; two (5%) participants moved from the area and one (3%) was lost to follow-up. No serious adverse events related to vaccination occurred. Mild to moderate reactogenicity was observed after vaccination, with symptoms of injection site pain and tenderness (27 [68%] of 40 participants), malaise (18 [45%] of 40 participants), headache (17 [43%] of 40 participants), and myalgia (14 [35%] of 40 participants) most commonly reported. Glycoprotein-specific antibodies were induced in 38 (95%) of 40 participants 4 weeks after vaccination, with geometric mean titres of 421 [95% CI 209-846] in the 1 × 1010 pu group and 545 [276-1078] in the 1 × 1011 pu group, and remained significantly elevated at 48 weeks compared with baseline titres (39 [95% CI 13-119] in the 1 ×1010 pu group and 27 [95-156] in the 1 ×1011 pu group; both p<0·0001). T-cell responses to the glycoprotein insert and neutralising responses against the cAd3 vector were also increased at 4 weeks after vaccination. INTERPRETATION: This first-in-human trial of this cAd3-Marburg vaccine showed the agent is safe and immunogenic, with a safety profile similar to previously tested cAd3-vectored filovirus vaccines. 95% of participants produced a glycoprotein-specific antibody response at 4 weeks after a single vaccination, which remained in 70% of participants at 48 weeks. These findings represent a crucial step in the development of a vaccine for emergency deployment against a re-emerging pathogen that has recently expanded its reach to new regions. FUNDING: National Institutes of Health.


Assuntos
Adenovirus dos Símios , Marburgvirus , Animais , Adulto , Humanos , Pan troglodytes , Anticorpos Antivirais , Vacinas Sintéticas/efeitos adversos , Adenoviridae , Glicoproteínas , Método Duplo-Cego
9.
J Med Food ; 26(1): 74-79, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36637439

RESUMO

The beneficial effects of sodium butyrate (NaB) and sodium propionate (NaP) on fatty acid oxidation (FAO) genes and production of proinflammatory cytokines related to nonalcoholic fatty liver disease (NAFLD) were evaluated using HepG2 human liver hepatocellular carcinoma cells exposed to palmitate/oleate or lipopolysaccharides (LPSs) as a model. The results showed that NaP or NaB was able to promote FAO, regulate lipolysis, and reduce reactive oxygen species production by significantly increasing the mRNA expression of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), peroxisome proliferator-activated receptor alpha (PPARα), adipose triglyceride lipase (ATGL), carnitine palmitoyltransferase 1 alpha (CPT1α), fibroblast growth factor 21 (FGF21), and uncoupling protein 2 (UCP2) in HepG2 cells. Together, NaP and NaB may produce greater effects by increasing CPT1α, PPARα, and UCP2 mRNA expression in LPS-treated HepG2 cells and by increasing CPT1α and ATGL mRNA expression in palmitate-/oleate-treated HepG2 cells. Only NaP treatment significantly increased FGF21 mRNA expression in palmitate-/oleate-treated HepG2 cells. The enzyme-linked immunosorbent assay results revealed that only pretreatment with LPSs and not palmitate/oleate significantly increased tumor necrosis factor alpha (TNF-α) expression in HepG2 cells. NaP alone or in combination with NaB significantly decreased TNF-α expression in LPS-induced HepG2 cells. The expression of interleukin-8 in both models showed no significant differences in all treatments. NaP and NaB show potential for in vivo studies on NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ácido Butírico/farmacologia , Células Hep G2 , Ácido Oleico , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Lipopolissacarídeos , Estresse Oxidativo , RNA Mensageiro/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo
10.
Chem Mater ; 34(21): 9503-9516, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36397836

RESUMO

Sr2NiO2Cu2Se2, comprising alternating [Sr2NiO2]2+ and [Cu2Se2]2- layers, is reported. Powder neutron diffraction shows that the Ni2+ ions, which are in a highly elongated NiO4Se2 environment with D4h symmetry, adopt a high-spin configuration and carry localized magnetic moments which order antiferromagnetically below ∼160 K in a √2a × âˆš2a × 2c expansion of the nuclear cell with an ordered moment of 1.31(2) µB per Ni2+ ion. The adoption of the high-spin configuration for this d 8 cation in a pseudo-square-planar ligand field is supported by consideration of the experimental bond lengths and the results of density functional theory (DFT) calculations. This is in contrast to the sulfide analogue Sr2NiO2Cu2S2, which, according to both experiment and DFT calculations, has a much more elongated ligand field, more consistent with the low-spin configuration commonly found for square-planar Ni2+, and accordingly, there is no evidence for magnetic moment on the Ni2+ ions. Examination of the solid solution Sr2NiO2Cu2(Se1-x S x )2 shows direct evidence from the evolution of the crystal structure and the magnetic ordering for the transition from high-spin selenide-rich compounds to low-spin sulfide-rich compounds as a function of composition. Compression of Sr2NiO2Cu2Se2 up to 7.2 GPa does not show any structural signature of a change in the spin state. Consideration of the experimental and computed Ni2+ coordination environments and their subtle changes as a function of temperature, in addition to transitions evident in the transport properties and magnetic susceptibilities in the end members, Sr2NiO2Cu2Se2 and Sr2NiO2Cu2S2, suggest that simple high-spin and low-spin models for Ni2+ may not be entirely appropriate and point to further complexities in these compounds.

11.
Front Mol Neurosci ; 15: 954928, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36131690

RESUMO

We describe the characterisation of a variable number tandem repeat (VNTR) domain within intron 1 of the amyotrophic lateral sclerosis (ALS) risk gene CFAP410 (Cilia and flagella associated protein 410) (previously known as C21orf2), providing insight into how this domain could support differential gene expression and thus be a modulator of ALS progression or risk. We demonstrated the VNTR was functional in a reporter gene assay in the HEK293 cell line, exhibiting both the properties of an activator domain and a transcriptional start site, and that the differential expression was directed by distinct repeat number in the VNTR. These properties embedded in the VNTR demonstrated the potential for this VNTR to modulate CFAP410 expression. We extrapolated these findings in silico by utilisation of tagging SNPs for the two most common VNTR alleles to establish a correlation with endogenous gene expression. Consistent with in vitro data, CFAP410 isoform expression was found to be variable in the brain. Furthermore, although the number of matched controls was low, there was evidence for one specific isoform being correlated with lower expression in those with ALS. To address if the genotype of the VNTR was associated with ALS risk, we characterised the variation of the CFAP410 VNTR in ALS cases and matched controls by PCR analysis of the VNTR length, defining eight alleles of the VNTR. No significant difference was observed between cases and controls, we noted, however, the cohort was unlikely to contain sufficient power to enable any firm conclusion to be drawn from this analysis. This data demonstrated that the VNTR domain has the potential to modulate CFAP410 expression as a regulatory element that could play a role in its tissue-specific and stimulus-inducible regulation that could impact the mechanism by which CFAP410 is involved in ALS.

12.
Vaccine ; 40(40): 5781-5790, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36055874

RESUMO

The global burden of malaria remains substantial. Circumsporozoite protein (CSP) has been demonstrated to be an effective target antigen, however, improvements that offer more efficacious and more durable protection are still needed. In support of research and development of next-generation malaria vaccines, Walter Reed Army Institute of Research (WRAIR) has developed a CSP-based antigen (FMP013) and a novel adjuvant ALFQ (Army Liposome Formulation containing QS-21). We present a single center, open-label, dose-escalation Phase 1 clinical trial to evaluate the safety and immunogenicity of the FMP013/ALFQ malaria vaccine candidate. In this first-in-human evaluation of both the antigen and adjuvant, we enrolled ten subjects; five received 20 µg FMP013 / 0.5 mL ALFQ (Low dose group), and five received 40 µg FMP013 / 1.0 mL ALFQ (High dose group) on study days 1, 29, and 57. Adverse events and immune responses were assessed during the study period. The clinical safety profile was acceptable and there were no serious adverse events. Both groups exhibited robust humoral and cellular immunological responses, and compared favorably with historical responses reported for RTS,S/AS01. Based on a lower reactogenicity profile, the 20 µg FMP013 / 0.5 mL ALFQ (Low dose) was selected for follow-on efficacy testing by controlled human malaria infection (CHMI) with a separate cohort. Trial Registration:Clinicaltrials.gov Identifier NCT04268420 (Registered February 13, 2020).


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Adjuvantes Imunológicos/efeitos adversos , Adulto , Anticorpos Antiprotozoários , Humanos , Malária Falciparum/prevenção & controle , Plasmodium falciparum , Proteínas de Protozoários
14.
RSC Med Chem ; 13(7): 831-839, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35919336

RESUMO

By 2050, it is predicted that antimicrobial resistance will be responsible for 10 million global deaths annually, more deaths than cancer, costing the world economy $100 trillion. Clearly, strategies to address this problem are essential as bacterial evolution is rendering our current antibiotics ineffective. The discovery of an allosteric binding site on the established antibacterial target DNA gyrase offers a new medicinal chemistry strategy. As this site is distinct from the fluoroquinolone binding site, resistance is not yet documented. Using in silico molecular design methods, we have designed and synthesised a novel series of biphenyl-based inhibitors inspired by a published thiophene-based allosteric inhibitor. This series was evaluated in vitro against Escherichia coli DNA gyrase and E. coli topoisomerase IV with the most potent compounds exhibiting IC50 values towards the low micromolar range for DNA gyrase and only ∼2-fold less active against topoisomerase IV. The structure-activity relationships reported herein suggest insights to further exploit this allosteric site, offering a pathway to overcome developing fluoroquinolone resistance.

15.
Environ Pollut ; 311: 119852, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35940489

RESUMO

Microplastics are emerging contaminants ubiquitously distributed in the environment, with rivers acting as their main mode of transport in surface freshwater systems. However, the relative importance of hydrologic processes and source-related variables for benthic microplastic distribution in river sediments is not well understood. We therefore sampled and characterized microplastics in river sediments across the Meramec River watershed (eastern Missouri, United States) and applied a hydrologic modeling approach to estimate the relative importance of river discharge, river sediment load, land cover, and point source pollution sites to understand how these environmental factors affect microplastic distribution in benthic sediments. We found that the best model for the Meramec River watershed includes both source-related variables (land cover and point sources) but excludes both hydrologic transport-related variables (discharge and sediment load). Prior work has drawn similar and dissimilar conclusions regarding the importance of anthropogenic versus hydrologic variables in microplastic distribution, though we acknowledge that comparisons are limited by methodological differences. Nevertheless, our findings highlight the complexity of microplastic pollution in freshwater systems. While generating a universal predictive model might be challenging to achieve, our study demonstrates the potential of using a modeling approach to determine the controlling factors for benthic microplastic distribution in fluvial systems.


Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos , Plásticos , Rios , Poluentes Químicos da Água/análise
16.
J Shoulder Elbow Surg ; 31(12): e628-e633, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35998781

RESUMO

BACKGROUND: Outpatient (OP) total shoulder arthroplasty (TSA) with same-day discharge can now be performed safely in appropriately selected patients. Patient knowledge and perspectives regarding OP TSA are yet unknown and such information may inform surgeon decision-making and provide a framework for addressing patient concerns. The goal of this study was to understand and quantify patient knowledge of and concerns for OP TSA, with a working hypothesis that majority of patients are unaware of OP TSA as a realistic option and that their primary concern would be postoperative pain control. METHODS: This was a retrospective cohort study at a tertiary care academic medical center including patients who underwent anatomic or reverse shoulder arthroplasty and completed an OP TSA expectations questionnaire/survey. This survey was provided preoperatively and included demographic factors, self-rated health evaluation, and perioperative expectations. Surveys evaluated whether patients undergoing TSA had any prior awareness of OP TSA and evaluated their primary concern with same-day discharge. Secondary questions included an assessment of patient expectations of outcomes of outpatient vs. inpatient surgery as well as their expected length of inpatient stay. RESULTS: A total of 122 patients who underwent anatomic and reverse shoulder arthroplasty completed the questionnaire and comprised the study cohort. Fifty-two (42.6%) of the patients were unaware that OP TSA was an option, and 26 (50%) of these were comfortable with the idea of OP TSA. Comfort with OP TSA was significantly associated with higher subjective patient-reported health status. Fifty-eight patients (47.5%) expected that following TSA they would require <24 hours of in-hospital postoperative care. The primary concern for patients considering OP TSA was postoperative pain control, endorsed by 44.3% of patients, compared with 13.1% of patients stating this would be their primary concern if admitted as an inpatient postoperatively. Pain control being a primary concern was significantly different between those considering outpatient vs. inpatient TSA. Most patients anticipated that OP shoulder arthroplasty would lead to a better (36%) or comparable (53%) outcome, whereas only 11% had concerns that it would lead to a worse outcome. CONCLUSION: Expanding OP TSA crucially depends on awareness and education. Perceived ability to control pain is an important concern. Patients may benefit from preoperative counseling, including emphasizing a comprehensive postoperative pain management strategy.


Assuntos
Artroplastia do Ombro , Articulação do Ombro , Humanos , Pacientes Ambulatoriais , Dor Pós-Operatória/prevenção & controle , Estudos Retrospectivos , Articulação do Ombro/cirurgia , Inquéritos e Questionários , Resultado do Tratamento
17.
Diabetes ; 71(10): 2153-2165, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35796669

RESUMO

Impaired insulin and incretin secretion underlie abnormal glucose tolerance (AGT) in pancreatic insufficient cystic fibrosis (PI-CF). Whether the incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) can enhance pancreatic islet function in cystic fibrosis (CF) is not known. We studied 32 adults with PI-CF and AGT randomized to receive either GLP-1 (n = 16) or GIP (n = 16) during glucose-potentiated arginine (GPA) testing of islet function on two occasions, with either incretin or placebo infused, in a randomized, double-blind, cross-over fashion. Another four adults with PI-CF and normal glucose tolerance (NGT) and four matched control participants without CF underwent similar assessment with GIP. In PI-CF with AGT, GLP-1 substantially augmented second-phase insulin secretion but without effect on the acute insulin response to GPA or the proinsulin secretory ratio (PISR), while GIP infusion did not enhance second-phase or GPA-induced insulin secretion but increased the PISR. GIP also did not enhance second-phase insulin in PI-CF with NGT but did so markedly in control participants without CF controls. These data indicate that GLP-1, but not GIP, augments glucose-dependent insulin secretion in PI-CF, supporting the likelihood that GLP-1 agonists could have therapeutic benefit in this population. Understanding loss of GIP's insulinotropic action in PI-CF may lead to novel insights into diabetes pathogenesis.


Assuntos
Fibrose Cística , Peptídeo 1 Semelhante ao Glucagon , Adulto , Arginina , Glicemia , Polipeptídeo Inibidor Gástrico/farmacologia , Glucagon , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Glucose/farmacologia , Humanos , Incretinas , Insulina , Proinsulina
18.
Oncogenesis ; 11(1): 30, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35650187

RESUMO

Malignant rhabdoid tumor (MRT) is driven by the loss of the SNF5 subunit of the SWI/SNF chromatin remodeling complex and then thought to be maintained by residual SWI/SNF (rSWI/SNF) complexes that remain present in the absence of SNF5. rSWI/SNF subunits colocalize extensively on chromatin with the transcription factor MYC, an oncogene identified as a novel driver of MRT. Currently, the role of rSWI/SNF in modulating MYC activity has neither been delineated nor has a direct link between rSWI/SNF and other oncogenes been uncovered. Here, we expose the connection between rSWI/SNF and oncogenic processes using a well-characterized chemical degrader to deplete the SWI/SNF ATPase, BRG1. Using a combination of gene expression and chromatin accessibility assays we show that rSWI/SNF complexes facilitate MYC target gene expression. We also find that rSWI/SNF maintains open chromatin at sites associated with hallmark cancer genes linked to the AP-1 transcription factor, suggesting that AP-1 may drive oncogenesis in MRT. Interestingly, changes in MYC target gene expression are not overtly connected to the chromatin remodeling function of rSWI/SNF, revealing multiple mechanisms used by rSWI/SNF to control transcription. This work provides an understanding of how residual SWI/SNF complexes may converge on multiple oncogenic processes when normal SWI/SNF function is impaired.

19.
Food Funct ; 13(9): 5166-5176, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35421887

RESUMO

Berry fruits are rich in polyphenolic compounds (PCs) and may promote health benefits. Anthocyanin (ACN) concentrations of red raspberry (RR) (Rubus idaeus) extracts were 887.6 ± 262.8 µg g-1, consisting mainly of cyanidin-3-sophoroside (C3S) equivalents. To test the efficacy of RR in diabetes treatment, seven patients with type 2 diabetes mellitus (T2DM) were given one oral RR serving (123 g per day) for two weeks. Blood samples were drawn at the baseline (BSL) and post-feeding (PF) periods for phenolic metabolite, inflammation and insulin resistance (IR) biomarker analysis. Two urolithin conjugates, urolithin A glucuronide (Uro-A glur) and urolithin A sulphate (Uro-A sulf) were identified in the PF period in 5 of the 7 patients in nanomolar concentrations (1.6 ± 0.7-63.2 ± 31.2 nM). ACN-derived metabolites such as protocatechuic acid (PCA) and 3,4-dihydroxyphenylacetic acid (DOPAC) were at micromolar levels and were higher during the PF period for diabetics and the levels were as follows: BSL: PCA = 0.6 ± 0.4, DOPAC = 1.2 ± 0.5; PF: PCA = 0.6 ± 0.4, DOPAC = 1.1 ± 0.6. The results revealed significant reductions in high sensitivity C-reactive protein, hsCRP (p = 0.01) and there was a downward trend in IR measured by the homeostatic model assessment of insulin resistance (HOMA-IR, p = 0.0584) in T2DM patients. DOPAC (1-100 µM) failed to stimulate insulin secretion in pancreatic ß-cells. The multiplex assay showed variations in the cytokine levels between patients, but differences were not significant. This study demonstrates a potential use of RR in the treatment of inflammation and possibly IR as well in patients with type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Rubus , Ácido 3,4-Di-Hidroxifenilacético , Biomarcadores , Diabetes Mellitus Tipo 2/tratamento farmacológico , Promoção da Saúde , Humanos , Inflamação/tratamento farmacológico , Insulina , Projetos Piloto , Polifenóis/farmacologia
20.
Molecules ; 27(5)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35268723

RESUMO

COVID-19 is an endothelial disease. All the major comorbidities that increase the risk for severe SARS-CoV-2 infection and severe COVID-19 including old age, obesity, diabetes, hypertension, respiratory disease, compromised immune system, coronary artery disease or heart failure are associated with dysfunctional endothelium. Genetics and environmental factors (epigenetics) are major risk factors for endothelial dysfunction. Individuals with metabolic syndrome are at increased risk for severe SARS-CoV-2 infection and poor COVID-19 outcomes and higher risk of mortality. Old age is a non-modifiable risk factor. All other risk factors are modifiable. This review also identifies dietary risk factors for endothelial dysfunction. Potential dietary preventions that address endothelial dysfunction and its sequelae may have an important role in preventing SARS-CoV-2 infection severity and are key factors for future research to address. This review presents some dietary bioactives with demonstrated efficacy against dysfunctional endothelial cells. This review also covers dietary bioactives with efficacy against SARS-CoV-2 infection. Dietary bioactive compounds that prevent endothelial dysfunction and its sequelae, especially in the gastrointestinal tract, will result in more effective prevention of SARS-CoV-2 variant infection severity and are key factors for future food research to address.


Assuntos
Endotélio/efeitos dos fármacos , Flavonoides/farmacologia , Alimento Funcional/análise , SARS-CoV-2/efeitos dos fármacos , COVID-19/patologia , COVID-19/virologia , Endotélio/metabolismo , Flavonoides/metabolismo , Flavonoides/uso terapêutico , Humanos , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Fatores de Risco , SARS-CoV-2/isolamento & purificação , Estilbenos/farmacologia , Estilbenos/uso terapêutico , Terpenos/farmacologia , Terpenos/uso terapêutico , Tratamento Farmacológico da COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...